Pyroptotic cells externalize eat-me and release find-me signals and are efficiently engulfed by macrophages.
نویسندگان
چکیده
Pathogenic intracellular bacteria often hijack macrophages for their propagation. The infected macrophages release IL-1β and IL-18 and simultaneously commit suicide, which is called pyroptosis; both responses require caspase-1. Here, we found that pyroptotic cells induced by microbial infection were efficiently engulfed by human monocytic THP-1-cell-derived macrophages or mouse peritoneal macrophages. This engulfment was inhibited by the D89E mutant of milk fat globule (MFG) epidermal growth factor (EGF) factor 8 (MFG-E8; a phosphatidylserine-binding protein) that has been shown previously to inhibit phosphatidylserine-dependent engulfment of apoptotic cells by macrophages, suggesting that the engulfment of pyroptotic cells by macrophages was also phosphatidylserine dependent. Using a pair of cell lines that respectively exhibited pyroptosis or apoptosis after muramyl dipeptide treatment, we showed that both pyroptotic and apoptotic cells bound to a T-cell immunoglobulin and mucin domain-containing 4 (Tim4; another phosphatidylserine-binding protein)-coated plate, whereas heat-killed necrotic cells did not, indicating that phosphatidylserine was externalized in pyroptosis and apoptosis but not in accidental necrosis. Macrophages engulfed apoptotic cells most efficiently, followed by pyroptotic and then heat-killed necrotic cells. Pyroptotic cells also released a macrophage attractant(s), 'find-me' signal, whose activity was diminished by apyrase that degrades nucleoside triphosphate to nucleoside monophosphate. Heat-killed necrotic cells and pyroptotic cells released ATP much more efficiently than apoptotic cells. These results suggest that pyroptotic cells, like apoptotic cells, actively induce phagocytosis by macrophages using 'eat-me' and find-me signals. Based on these results, a possible role of coordinated induction of pyroptosis and inflammatory cytokine production is discussed.
منابع مشابه
Constitutive exposure of phosphatidylserine on viable cells.
Apoptotic cells are quickly recognized and engulfed by phagocytes to prevent the release of noxious materials from dying cells. Phosphatidylserine (PS) exposed on the surface of apoptotic cells is a proposed "eat-me" signal for the phagocytes. Transmembrane protein 16F (TMEM16F), a membrane protein with eight transmembrane segments, has the Ca-dependent phospholipid scramblase activity. Here we...
متن کاملBeginnings of a good apoptotic meal: the find-me and eat-me signaling pathways.
Prompt and efficient clearance of apoptotic cells is necessary to prevent secondary necrosis of dying cells and to avoid immune responses to autoantigens. Recent studies have shed light on how apoptotic cells through soluble "find-me" signals advertise their presence to phagocytes at the earliest stages of cell death. Phagocytes sense the find-me signal gradient, and in turn the presence of dyi...
متن کاملMacrophages eat cancer cells using their own calreticulin as a guide: roles of TLR and Btk.
Macrophage-mediated programmed cell removal (PrCR) is an important mechanism of eliminating diseased and damaged cells before programmed cell death. The induction of PrCR by eat-me signals on tumor cells is countered by don't-eat-me signals such as CD47, which binds macrophage signal-regulatory protein α to inhibit phagocytosis. Blockade of CD47 on tumor cells leads to phagocytosis by macrophag...
متن کاملPhosphatidylserine externalization, “necroptotic bodies” release, and phagocytosis during necroptosis
Necroptosis is a regulated, nonapoptotic form of cell death initiated by receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like (MLKL) proteins. It is considered to be a form of regulated necrosis, and, by lacking the "find me" and "eat me" signals that are a feature of apoptosis, necroptosis is considered to be inflammatory. One such "eat me" signal observed during ...
متن کاملMicroparticles Release by Adipocytes Act as “Find-Me” Signals to Promote Macrophage Migration
Macrophage infiltration of adipose tissue during weight gain is a central event leading to the metabolic complications of obesity. However, what are the mechanisms attracting professional phagocytes to obese adipose tissue remains poorly understood. Here, we demonstrate that adipocyte-derived microparticles (MPs) are critical "find-me" signals for recruitment of monocytes and macrophages. Super...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International immunology
دوره 25 6 شماره
صفحات -
تاریخ انتشار 2013